

Rehabilitation Options

- ➤ Gravel Roads
 - ▶ Grading
 - Aggregate Addition / Stabilization
- > Paved Roads
 - ➤ Chip and Seal
 - > Resurfacing
- > Re-Construct
- > Reclamation

Aggregate Additions DSA: Driving Surface Aggregate (PSU)

- Surface Wearing Course developed specifically for Unpaved Roads.
- Unique particle size distribution
 - Maximize packing density
 - > Durable road surface
 - > 1 ½ "X 0
- > PENNDOT approved as of 2006 (publication 447)

Technical Laboratories

Pavements

Typically comprised of several layers with each layer having it's own function and purpose. The most important part of a roadway is the subgrade / subbase condition. If this layer is good a smaller asphalt cross-section is required to provide a stable pavement section. If this supporting layer is poor a thicker asphalt section is required.

Noble County

Steuben County

Improved Foundation = Added Strength / Life

Reclamation

Overlay

Mill & Fill

Full Depth Reclamation

The full depth reclamation process is applicable to depths up to 12 to 16", with typical applications in the range of 6 to 9". It removes deep pavement cracks thereby eliminating the potential for reflective cracking. The process allows for cross-slope and profile grade adjustments. If specific conditions dictate that the final surface treatment will be applied at a later date, the road can be opened to traffic once the compactors complete their pass. A roadway rehabilitated utilizing the full depth reclamation process is equivalent to a traditionally re-constructed roadway in terms of life expectancy, wear and load-bearing characteristics (Better Roads, 2001). However the process has less interruption of traffic, is environmentally friendly, and is completed at a fraction of the cost.

Reclamation Benefits

- Reduced Costs of Construction
- Conservation of Aggregates and Binders
- Preservation of Existing Pavement Geometrics
- Preservation of the Environment
- Conservation of Energy
- Less User Delay
- > No need to remove materials

Kandhal and Mallick 1997

Typical Aggregate Specification Requirements

- Key Physical Properties
 - Liquid Limit: Max 35
 - Plasticity Index: 4 to 9
 - > LA Abrasion: Max 50
 - > Soundness: Sodium Sulfate 12% Max @ 5 Cycles
 - Crush Count: 75% One Face
 - Gradation

FHWA (Gravel Roads Maintenance and Design Manual)

GRADATION FOR AGGREGATE SURFACE COURSE				
Percent passing				
<u>Sieve</u>	<u>No. 1</u>	<u>No. 2</u>	<u>FDR</u>	
1"	100	100		
3/8"	50-85	60-100		
#4	35-65	50-85		
#10	25-50	40-70		
#40	15-30	24-45		
#200	8-15	8-15		

Why Use Steel Slag?

Europe

- > The use of steel slag in pavement structure courses would be acceptable from both economic and environmental standpoints: (Građevinar; 1/2012)
- ➤ The main aim of the work was to determine whether a weathered BOF slag could be used as a main constituent in hydraulic road binder. (Mahieux, Aubert, and Escadeillas; 9/2009)

Australia

➤ The material has been blended at a rate of about 40% with existing base materials to rehabilitate existing pavements where the EAFS increased the wet/dry strength value, decreased the Plasticity Index and modified the pavement materials such that it now conforms to a DGB20 specification in accordance with RMS Specification 3051.

> Stabilization

- Mechanical / Chemical
 - > Purdue

Stabilization - Mechanical

- Compacting and Blending
 - Mixing 2 or more soils to obtain desired gradation
 - Placing non chemical material in or on a soil to provide strength
- > Various materials
 - Crushed Aggregate
 - ➤ Asphalt Pavement Millings
 - > Crushed Concrete
 - Crushed Slag

- > Benefits
 - Improve Gradation
 - Increase Structural Stability
 - > Improve Interlock
 - Don't have to sacrifice thickness by adding material:
 - Correct cross-slope and/or profile grade
 - Widen
 - Can use with other stabilizing additives
 - > Bituminous
 - Chemical

Stabilization - Chemical

- Traditional Stabilizers
 - > Cement
 - > Lime
 - > Fly Ash
 - > Calcium Chloride
 - > Bituminous materials
- > Amount Matters
 - ▶ Less = Modify
 - ➤ More = Improve

- > Benefits
 - Modify on-site materials to be stronger for structural base or subbase.
 - Reduces/eliminates need to do full depth repairs or total reconstruction.
 - Noble County: "...the moisture ... activates the lime in the Duraberm resulting in lime hardening (CaO+H2O>Ca(OH)2)."

Steel Slag Characterization

- Non-Liquid / Non-Plastic
- LA Abrasion: 18 to 30
- ➤ Sodium Sulfate Soundness: <12%
- Crush Count: Highly Irregular (80+ Two Face)
- Gradation: Meets ASTM (D1241) and FHWA (Type 1 or 2) Requirements
- ➤ Binding Potential: Free Lime in Excess of 6%*
 - ➤ There are various types of Steel Slag. Not all have the ability to act as a binder in these applications. Proper characterization is essential.

Steel Slag Characterization

- Chemical Properties
 - ≻pH
 - Chemical Analysis by various methods
 - ➤ Calcium Carbonate Equivalency (CCE)
 - > Free Lime
- Physical Properties
 - > Gradation
 - > Moisture
 - Specific Gravity and Absorption
 - Unit Weight
 - Expansion / Disruption

Steel Slag Characterization Environmental Considerations

- Quality Roads
- > Environmental Contaminations
- Land Applications
- EPA, State, and other regulatory bodies

Evaluation

- ➤ Step 1 Evaluate existing Pavement
 - ➤ Gather Information
 - ➤ Depth of existing Surface / Base?
 - ➤ How many pavement layers and what types are each?
 - >What's the expected traffic levels?
 - >Level of Deterioration?
 - Test the pavement to know the composition and thickness of the existing layers.
 - ➤ Cores Center and Edges, Various Locations
 - ➤ Gradation, PL/LL
 - >Interpret the results to determine proper technique

Triaxial Data

	Unconfined Compression		
	No Aging	28 Day	
Existing Roadway	23.0 psi	46.5 psi	
W/ 30% Blend	26.4 psi	80.9 psi	
W/ 40% Blend	39.5 psi	85.3 psi	
W/ 50% Blend	57.5 psi	90.3 psi	
W/ 60% Blend	61.8 psi	96.0 psi	

Construction

- ➤ Step 1 Mixture
 - ➤ Blend Ratio / Type of Binder
 - > Target
- Step 2 Geometry
 - > Surface drainage, elevation, etc.
- > Step 3 Placement
 - >3-8" uncompacted
 - ➤ Consider traffic and budgets

- ➤ Step 4 Blend / Stabilize
 - > Binder
 - Final depth 6" to 14"
- Step 5 − Compact
- Step 6 Finish (Surface)

Cost Breakdown

- > 8" Depth with 0.5 gal CaCl / sq. yd.
- Base
 - > \$29,442 / mile (22' wide)
- With Triple Chip and Seal / Fog Seal
 - > \$67,323 / mile
- With 1.5" Overlay
 - > \$90, 774 / mile

- > 8"Depth with 1 gal emulsion / sq. yd.
- Base (4" add)
 - > \$50,000 / mile (3 miles, 20' wide)
- With Double Chip and Seal
 - > \$75,000 / mile

Traditional FDR \$200,000 - \$300,000 / mile Traditional Reconstruction \$300,000 - \$500,000 / mile

Typical Surface Treatments

- Chip and Seal
- Double Chip and Seal
- Cold Mix Asphalt
- Hot Mix Asphalt

References:

- > FHWA: Gravel Roads Maintenance & Design Manual
- > FHWA –HIF-036, Full Depth Reclamation
- USDA Forest Service: Stabilization Selection Guide for Aggregate & Native-Surfaced Roads
- ➤ USACE: UFGS Section 32 15 00 Aggregate Surface Course
- Minnesota DOT: Design Guide for Low-Volume Aggregate Surfaced Roads
- ➤ ASTM: D1241 Specification for Materials for Soil-Aggregate Subbase, Base and Surface.
- > New York DOT GEM-27, "Full Depth Reclamation of Asphalt Pavement"

Acknowledgements:

- Zack Smith / Noble County Highway Department, Indiana
- Jennifer Sharkey & Emmett Heller / Steuben County Highway Department, Indiana
- Michael Barton / Whitely County Highway Department, Indiana
- Pennsylvania DOT

County	McKean Co.
Project Length	4.65 Miles
Estimated Project Cost/ Cost per mile	
Average Daily Truck Traffic	1,035
Average Daily Truck Traffic	376
Estimated Project starting	July 2016, (Pending on A-409 Funds)
Date	
Scope of repairs proposed:	12" Full-depth reclamation (FDR) to widen the base from 20' to 24'. Approximately 100,000 Cubic feet / 6,500 ton of slag is to be used as the aggregate to obtain the necessary structure for widening. Overlay with 3" Binder & 1.5" Wearing course at 22'. Guiderail safety upgrade, tree trimming and some drainage will be addressed.

